Personalized Medicine and Imaging Real-time, Near-Infrared Fluorescence Imaging with an Optimized Dye/Light Source/Camera Combination for Surgical Guidance of Prostate Cancer
نویسندگان
چکیده
Purpose: The prostate-specific membrane antigen (PSMA) is a surface glycoprotein overexpressed on malignant prostate cells, as well as in the neovasculature of many tumors. Recent efforts to target PSMA for imaging prostate cancer rely on suitably functionalized low-molecular-weight agents. YC-27 is a low-molecular-weight, urea-based agent that enables nearinfrared (NIR) imaging of PSMA in vivo. Experimental Design: We have developed and validated a laparoscopic imaging system (including an optimized light source, LumiNIR) that is capable of imaging small tumor burdens with minimal background fluorescence in real-time laparoscopic extirpative surgery of small prostate tumor xenografts in murine and porcine models. Results: In a mouse model, we demonstrate the feasibility of using real-time NIR laparoscopic imaging to detect and surgically remove PSMA-positive xenografts. We then validate the use of our laparoscopic real-time NIR imaging system in a large animal model. Our novel light source, which is optimized for YC-27, is capable of detecting as little as 12.4 pg/mL of the compound (2.48-pg YC-27 in 200-mL agarose). Finally, in a mouse xenograft model, we demonstrate that the use of real-time NIR imaging can reduce positive surgical margins (PSM). Conclusions: These data indicate that a NIR-emitting fluorophore targeted to PSMA may allow improved surgical treatment of human prostate cancer, reduce the rate of PSMs, and alleviate the need for adjuvant radiotherapy postoperatively. Clin Cancer Res; 21(4); 771–80. 2014 AACR.
منابع مشابه
Real-time, near-infrared fluorescence imaging with an optimized dye/light source/camera combination for surgical guidance of prostate cancer.
PURPOSE The prostate-specific membrane antigen (PSMA) is a surface glycoprotein overexpressed on malignant prostate cells, as well as in the neovasculature of many tumors. Recent efforts to target PSMA for imaging prostate cancer rely on suitably functionalized low-molecular-weight agents. YC-27 is a low-molecular-weight, urea-based agent that enables near-infrared (NIR) imaging of PSMA in vivo...
متن کاملIntraoperative detection of liver tumors aided by a fluorescence goggle system and multimodal imaging.
Real-time image guidance in the operating room is needed to improve instantaneous surgical decisions. Toward this goal, we utilized a new fluorescence goggle system and a near-infrared fluorescent dye approved for human use, indocyanine green, to demonstrate the feasibility of detecting liver tumors intraoperatively. The fluorescence goggle provided successful imaging of multifocal breast cance...
متن کاملModeling Time Resolved Light Propagation Inside a Realistic Human Head Model
Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...
متن کاملQuantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملIR-780 Dye for Near-Infrared Fluorescence Imaging in Prostate Cancer
BACKGROUND The aim of this study was to investigate near-infrared fluorescence (NIRF) imaging as a novel imaging modality that allows for early detection of cancer and real-time monitoring to acquire related information. IR-780 iodide, a lipophilic dye, accumulates selectively in breast cancer cells and drug-resistant human lung cancer cells, with a peak emission at 780 nm that can be easily de...
متن کامل